109 年專技高考 土木技師試題

等 別:高等考試

類 科:土木工程技師

科 目:大地工程(含土壤力學、基礎工程與工程地質)

一、針對活動斷層及斷層泥,請説明:(20分)

(一) 依據經濟部中央地質調查所, 説明臺灣之活動斷層如何定義? 其如何分類?

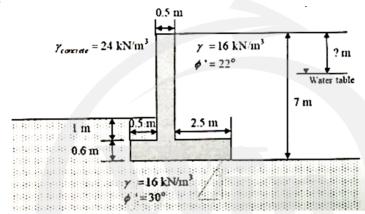
二)説明斷層泥之力學性質。當隧道開挖時遭遇斷層泥,其可能產生之影響。

《考題難易》★★★ 能了解活動斷層與斷層泥定義

《命中特區》在工程地質講義 4-10,6-40

【 擬答 】:

(一) 中央地質調查所活動斷層分類:


第一類活動斷層(9),為一萬年內曾經發生錯移之斷層,或錯移現代結構物之斷層,或與地震相伴生之斷層,或錯移現代沖積層之斷層,或地形監測證實具潛移活動性之斷層。

第二類活動斷層(15),為過去十萬年以來曾經發生錯移之斷層,或錯移階地堆積物或台地 堆積層之斷層。

存疑性活動斷層(27),為將第四紀地層錯移之斷層,或將紅土緩起伏面錯移之斷層,或具活動斷層地形特徵,但缺乏地質資料佐證之斷層。

- - 1. 斷層及斷層泥:開挖中遇到斷層,常發生斷層泥、斷層屑伴同地下水湧入隧道已開挖 段,造成工作停頓。
 - 2. 湧水量:湧水量大,施工必然困難。可以排水廊道等方式來克服。

- 二、有一懸臂式擋土牆如圖所示,牆背回填土壤之單位重 $\gamma=16kN/m^3$,摩擦角 $\phi'=22^0$,牆前土壤之單位重 $\gamma=16kN/m^3$,摩擦角 $\phi'=30^0$,地下水位遠低於擋土牆底部,請以 Rankine 土壓力理論計算: $(20\ \odot)$
 - 一此牆抗傾倒之安全係數。
 - (二) 若牆底與土壤之摩擦角為土壤之 2/3, 此牆滑移之安全係數。
 - (Ξ) 由於擋土牆之排水孔失效,導致牆後地下水上升,土壤之飽和單位重 $\gamma_{sat}=19.5kN/m^3$,請問當地下水上升至距牆背地表多少深度時發生滑移破壞(假設牆抵抗滑力同 (Ξ)) 題之結果)?

《考題難易》 ★★★★

《命中特區》 此題出現在基礎工程講義 5-46 之類似題

【 擬答 】:

(一) 此牆抗傾倒之安全係數:

主動土壓力 P_a 之計算

$$K_a = \tan^2(45 - \frac{\phi}{2}) = 0.46$$

$$P_a = \frac{1}{2} \gamma K_a H^2 = \frac{1}{2} 16 \times 0.46 \times 7^2 = 180.32 \text{kN/m}$$
 被動土壓力 P_p 之計算

$$K_p = \tan^2(45 + \frac{\phi}{2}) = 3$$

 $P_p = \frac{1}{2} \gamma K_p H^2 = \frac{1}{2} 16 \times 3 \times 1.6^2 = 61.44 kN/m$

1. 牆土自重及抗翻力矩計算

位置	單位長度重量 (kN/m)	力臂 (<i>m</i>)	力矩 (kN-m/m)
牆身	0.5×6.4×24=76.8	0.75	57.6
牆基	0.6×3.5×24=50.4	1.75	88.2
背填土	2.5×6.4×16=256	2.25	576
	$\Sigma V = 383.2$		$\sum M_r = 721.8$

2. 抗傾安全係數

抗傾
$$FS = \frac{M_{\rm r}}{M_{\rm d}} = \frac{721.8 + 61.44(1/3)}{180.32 \times (7/3)} = \frac{742.28}{420.75} = 1.76$$

(二) 牆滑移之安全係數:

抗滑
$$FS = \frac{F_r}{P_a} = \frac{\sum V \tan \delta + P_p}{P_a} = \frac{383.2 \tan(2/3)30^\circ + 61.44}{180.32} = \frac{139.47 + 61.44}{180.32} = 1.11$$

(三) 地下水上升至距牆背地表多少深度時發生滑移破壞(假設牆抵抗滑力同二) 題之結果,故破壞時之水平推力=139.47+61.44=200.91破壞時之水平推力=下圖有地下水之水平推力之和有地下水之水平壓力圖如下

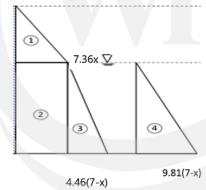


圖 1 壓力 = 0.46(16)x = 7.36x

圖 3 底部之壓力增量 = 4.467(7-x)

有地下水之總水平推力=破壞時之水平推力

$$7.36x(0.5x) + 7.36x(7-x) + (0.5)4.46(7-x)^{2} + (0.5)9.81(7-x)^{2} = 200.9$$

$$349.615 - 48.37x + 3.455x^2 = 200.9$$

$$x^2 - 14x + 43.04 = 0 \Rightarrow x = 4.56(m)$$

地下水上升至距牆背地表下 4.56m 深度時發生滑移破壞

三、針對一土壤(比重 2.70)進行標準夯實試驗(Standard Proctor Compaction test),其結果如下所示。 (20 分)

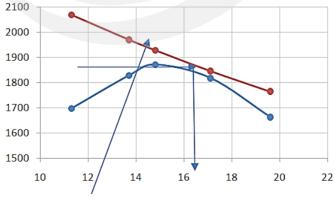
濕密度 $\gamma_m(kg/m^3)$	1890	2080	2150	2130	1990
含水量(%)	11.3	13.7	14.8	17.1	19.6

- (一) 繪製乾密度與含水量關係曲線,求取最大乾密度與最佳含水量。
- 二)繪製無空氣孔隙曲線(Zero air void curve)
- (三) 現地夯實時, 欲降低其滲透性, 含水量應控制在乾側或濕側?説明其原因。

《考題難易》★★★

《命中特區》此題出現在之土力講義 1-43 類似題

【 擬答 】:


$$\rho_d = \frac{\rho_m}{1+\omega} \ .$$

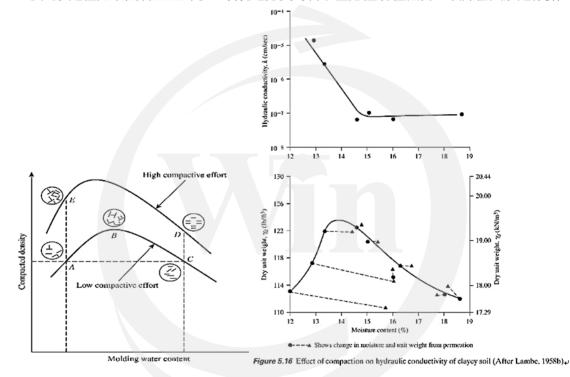
當 S=100%時,
$$\rho_{d(zero)} == \frac{G_s \gamma_w}{1 + G_s \omega}$$

分別求下表對應之乾密度

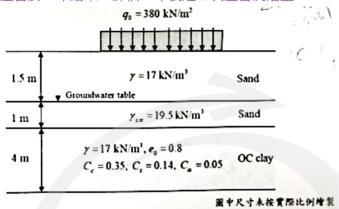
$\rho_m(kg/m^3)$	w(%)	$\rho_d(kg/m^3)$	零孔隙曲線 $ ho_d$
1890	11.3	1698.11	2068.81
2080	13.7	1829.38	1970.95
2150	14.8	1872.82	1929.12
2130	17.1	1818.96	1847.16
1990	19.6	1663.88	1765.63

可得夯實曲線如下之藍色線:

最大乾密度 $1890(kg/m^3)$ 最佳含水量14.8%


二 繪出零孔隙曲線(Zero air void curve)

當 S=100%時,
$$e = \omega G_s$$


$$\rho_{d(zero)} = \frac{G_s \gamma_w}{1+e} = \frac{G_s \gamma_w}{1+G_s \omega}$$

故使用上式可得零孔隙曲線,結果如上表第四欄其如上圖之紅線

(三) 濕側夯實時,土壤會形成分散結構(dispersion structure)即土壤顆粒呈平行排列(下圖左)而減小其滲透性如下圖右上左所示。故現地夯實時含水量應控制在濕側,以降低其滲透係數。

- 四、一地層分布與性質如圖所示,圖中黏土層(OC clay)之預壓密應力為 $75kN/m^2$,初始孔隙比 $e_0=0.8$,今於此地層之上築一土堤,長度及寬度分別為 15m 與 5m,試評估黏土層之壓密 沉陷量:(20 分)
 - (一) 主要壓密沉陷量?
 - 二) 當主要壓密於1年結束,評估5年後之二次壓密沉陷量。

《考題難易》★★★

《命中特區》此題出現在此題出現在之土力講義 4-20 類似題

【擬答】:

(一) 主要壓密沉陷量:

$$\sigma_0 = 17(1.5) + 1(19.5 - 9.81) + 2(17 - 9.81) = 49.57kPa$$

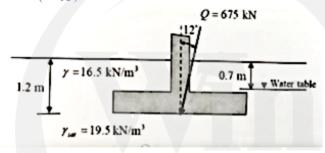
49.57*kPa* < 75*kPa* 是 OC clay

求黏土層中間之應力增量(2:1法則)

$$\Delta \sigma_m = \frac{380(15 \times 5)}{(15 + 4.5)(5 + 4.5)} = 153.85 kPa$$

49.57 + 153.85 kPa > 75 kPa 由 OC clay 到 NC clay

$$C_s = 0.14$$
 $C_c = 0.35$


主要壓密沉陷量為

$$S_c = \frac{(0.14)400}{1+0.8} \log \frac{75}{49.57} + \frac{(0.35)400}{1+0.8} \log \frac{153.85}{75} = 5.59 + 24.47 = 29.86cm$$

二) 評估5年後之二次壓密沉陷量

$$\begin{split} e_p &= e_o - \Delta e_{\pm \underline{\text{MER}}} \\ \Delta e &= (0.14) \log \frac{75}{49.57} + (0.35) \log \frac{153.85}{75} = 0.025 + 0.11 = 0.13 \\ e_p &= e_o - \Delta e = 0.8 - 0.13 = 0.67 \\ S_c &= \frac{(0.05)400}{1 + 0.67} \log \frac{5}{1} = 8.37 \, cm \end{split}$$

五、一正方形基礎座落於土壤中,基礎面在地面下 $1.2\mathrm{m}$,承受一傾斜荷重 $675\mathrm{kN}$,傾斜角度為 12^0 ,如圖所示。該土壤之濕單位重 $\gamma_m=16.5\mathrm{kN}/m^3$,飽和單位重 $\gamma_{sat}=19.5\mathrm{kN}/m^3$,地下水位 在地面下 $0.7\mathrm{m}$ 。 $(20\,\%)$

(一) 為求取土壤強度參數,進行三個不擾動土壤試體之三軸壓密不排水試驗(Consolidated Undrained Test),試體破壞時所記錄的應力與孔隙水壓資料如下表所示,試繪出此土壤之總應力與有效應力破壞包絡線,求取上述基礎設計所需之莫爾-庫倫(Mohr-Coulomb Criterion) 強度參數。

試體編號	圍壓 $\sigma_3(kN/m^2)$	軸差壓力 (σ ₁ – σ ₃)(kN / m ²)	孔隙水壓(u) (kN/m²)
1	50	57	21
2	100	118	40
3	200	205	82
4	400	423	158

\Box 若安全係數 FS = 3.0,決定基礎寬度 B 為多少。

參考公式

$$q_{sii} = \left(\frac{q_s - q}{FS}\right) + q$$

Shape factors	Depth factors	Inclination factors
$F_{cs} = 1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right)$	$F_{cd} = 1 + 0.4 \left(\frac{D_f}{B}\right)$	$F_{ci} = F_{qi} = (1 - \frac{\beta^{\circ}}{90^{\circ}})^2$
$F_{qs} = 1 + \left(\frac{B}{L}\right) \tan \varphi'$	$F_{qd} = 1 + 2\tan\varphi'(1 - \sin\varphi')^2 \frac{D_f}{B}$	$F_{ri} = (1 - \frac{\beta}{\varphi'})^2$
$F_{ys} = 1 - 0.4 \left(\frac{B}{L}\right)$	$F_{rd} = 1$	·

♦(度)	Nc	N _q	N,	♦(度)	Nc	N _q	N
23	18.05	8.66	8.20	37	55.63	42.92	66.19
24	19.32	9.60	9.44	38	61.35	48.93	78.03
25	20.72	10.66	10.88	39	67.87	55.96	92.25
26	22.25	11.85	12.54	40	75.31	64.20	109.41
27	23.94	13.20	14.47	41	83.86	73.90	130.22
28	25.80	14.72	16.72	42	93.71	85.38	155.55
29	27.86	16.44	19.34	43	105.11	99.02	186.54
30	30.14	18.40	22.40	44	118.37	115.31	224.64
31	32.67	20.63	25.99	45	133.88	134.88	271.76
32	35.49	23.18	30.22	46	152.10	158.51	330.35
33	38.64	26.09	35.19	47	173.64	187.21	403.67
34	42.16	29.44	41.06	48	199.26	222.31	496.01
35	46.12	33.30	48.03	49	229.93	265.51	613.16
36	50.59	37.75	56.31	50	266.89	319.07	762.89

《考題難易》★★★★★

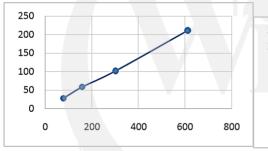
《命中特區》土力講義 PP.5-53 與基礎工程講義 PP.2-15 至 PP.2-16 之類似題

【擬答】:

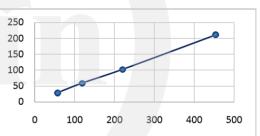
242

試體	$\sigma_{_3}$	$\Delta\sigma$	и	$\sigma_{_{ m l}}$	$\sigma_{\scriptscriptstyle 1}'$	σ_3'
1	50	57	21	107	86	29
2	100	118	40	218	178	60
3	200	205	82	405	323	118

823


158

(一) 4 個試驗之總應力與有效應力如下表:


400

	p	q	p'	q'
1	78.5	28.5	57.5	28.5
2	159	59	119	59
3	302.5	102.5	220.5	102.5
4	611.5	211.5	453.5	211.5

利用 p 與 q 值得其總應力與有效應力修正破壞包絡線如下(左:總應力 右:有效應力)

423

665

基礎強度分析採用有效應力強度分析:

由上圖之破壞包絡線大約通過原點故c'可假設為0

各個試驗之有效應力強度參數 ϕ' 可由下式求得:

$$\sigma'_{1} = \sigma'_{3} \tan^{2}(45 + \frac{\phi'}{2}) \rightarrow 86 = 29 \tan^{2}(45 + \frac{\phi'}{2}) \Rightarrow \phi' = 30$$

$$\sigma'_{1} = \sigma'_{3} \tan^{2}(45 + \frac{\phi'}{2}) \rightarrow 178 = 60 \tan^{2}(45 + \frac{\phi'}{2}) \Rightarrow \phi' = 30$$

$$\sigma'_{1} = \sigma'_{3} \tan^{2}(45 + \frac{\phi'}{2}) \rightarrow 323 = 118 \tan^{2}(45 + \frac{\phi'}{2}) \Rightarrow \phi' = 28$$

$$\sigma'_{1} = \sigma'_{3} \tan^{2}(45 + \frac{\phi'}{2}) \rightarrow 665 = 242 \tan^{2}(45 + \frac{\phi'}{2}) \Rightarrow \phi' = 28$$

將四個試驗之 ϕ' 平均得 $\phi'=29$

$$(\Box)$$
 因 $c'=0$, 極限承載力變成

$$q_{u} = qN_{q}F_{qs}F_{qd}F_{qi} + \frac{1}{2}\gamma'BN_{\gamma}F_{\gamma s}F_{\gamma d}F_{\gamma i}$$

$$q = (0.7)(16.5) + (0.5)(19.5 - 9.81) = 11.55 + 4.85 = 16.40kN/m^{2}$$

$$\gamma = 18kN/m^{3}$$
曲表 2.3 , 當 $\phi' = 29^{0}$ °時
$$N_{q} = 16.44 , N_{\gamma} = 19.34$$

$$F_{qs} = 1 + (\frac{B}{L})\tan\phi' = 1 + 0.554 = 1.55$$

$$F_{\gamma s} = 1 - 0.4(\frac{B}{L}) = 0.6$$

$$F_{\gamma d} = 1$$

$$F_{qd} = 1 + 2\tan\phi'(1 - \sin\phi')^{2}\frac{D_{f}}{B} = 1 + \frac{(0.294)(0.7)}{B} = 1 + \frac{0.205}{B}$$

$$F_{qi} = (1 - \frac{\beta^{0}}{90^{0}})^{2} = (1 - \frac{12}{90})^{2} = 0.75$$

$$F_{\gamma i} = (1 - \frac{\beta^{0}}{\beta^{0}})^{2} = (1 - \frac{12}{20})^{2} = 0.34$$

因此

$$q_u = (16.4)(16.44)(1.55)(1 + \frac{0.205}{B})(0.75) + (0.5)(19.5 - 9.81)(B)(19.34)((0.6)(1)(0.34))$$

$$= 313.43 + \frac{62.45}{B} + 19.11B$$

所以

$$q_{all} = \frac{q_u - q}{3} + q = 104.47 + \frac{20.81}{B} + 6.37B + (2/3)(16.4)$$

已知
$$Q$$
 =總容許載重 = $q_{all} \times B^2$ 或 $q_{all} = \frac{675}{B^2}$

故可得:

$$\frac{675}{B^2} = 115.4 + \frac{20.81}{B} + 6.37B$$

最後,藉由試誤法得, $B \approx 2.2m$